Correcting the Standard Errors of 2-Stage Residual Inclusion Estimators for Mendelian Randomization Studies

نویسندگان

  • Tom M Palmer
  • Michael V Holmes
  • Brendan J Keating
  • Nuala A Sheehan
چکیده

Mendelian randomization studies use genotypes as instrumental variables to test for and estimate the causal effects of modifiable risk factors on outcomes. Two-stage residual inclusion (TSRI) estimators have been used when researchers are willing to make parametric assumptions. However, researchers are currently reporting uncorrected or heteroscedasticity-robust standard errors for these estimates. We compared several different forms of the standard error for linear and logistic TSRI estimates in simulations and in real-data examples. Among others, we consider standard errors modified from the approach of Newey (1987), Terza (2016), and bootstrapping. In our simulations Newey, Terza, bootstrap, and corrected 2-stage least squares (in the linear case) standard errors gave the best results in terms of coverage and type I error. In the real-data examples, the Newey standard errors were 0.5% and 2% larger than the unadjusted standard errors for the linear and logistic TSRI estimators, respectively. We show that TSRI estimators with modified standard errors have correct type I error under the null. Researchers should report TSRI estimates with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard errors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of variance estimators for meta-analysis of instrumental variable estimates

Background Mendelian randomization studies perform instrumental variable (IV) analysis using genetic IVs. Results of individual Mendelian randomization studies can be pooled through meta-analysis. We explored how different variance estimators influence the meta-analysed IV estimate. Methods Two versions of the delta method (IV before or after pooling), four bootstrap estimators, a jack-knife ...

متن کامل

Detecting and correcting for bias in Mendelian randomization analyses using gene-by-environment interactions

Detecting and correcting for bias in Mendelian randomization analyses using gene-by-environment interactions Wes Spiller, David Slichter, Jack Bowden and George Davey Smith equal supervisory contribution 1 School of Social and Community Medicine, University of Bristol, Barley House, Oakfield Grove, Bristol, BS8 2BN, U.K 2 Department of Economics, Binghamton University, State University of New Y...

متن کامل

Authors’ response to Hartwig and Davies

1. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003;32:1–22. 2. Burgess S, Timpson NJ, Ebrahim S, Davey Smith G. Mendelian randomization: where are we now and where are we going? Int J Epidemiol 2015;44:379–88. 3. Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G....

متن کامل

A review of instrumental variable estimators for Mendelian randomization

Instrumental variable analysis is an approach for obtaining causal inferences on the effect of an exposure (risk factor) on an outcome from observational data. It has gained in popularity over the past decade with the use of genetic variants as instrumental variables, known as Mendelian randomization. An instrumental variable is associated with the exposure, but not associated with any confound...

متن کامل

The many weak instruments problem and Mendelian randomization

Instrumental variable estimates of causal effects can be biased when using many instruments that are only weakly associated with the exposure. We describe several techniques to reduce this bias and estimate corrected standard errors. We present our findings using a simulation study and an empirical application. For the latter, we estimate the effect of height on lung function, using genetic var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 186  شماره 

صفحات  -

تاریخ انتشار 2017